
Delay-Sensitive Computation Partitioning for
Mobile Augmented Reality Applications

Chaokun Zhang∗, Rong Zheng†, Yong Cui‡, Chenhe Li†, Jianping Wu‡
∗College of Intelligence and Computing, Tianjin University, Tianjin, China

†Department of Computing and Software, McMaster University, Hamilton, ON, Canada
‡Department of Computer Science and Technology, Tsinghua University, Beijing, China

zhangchaokun@tju.edu.cn, {rzheng, lic54}@mcmaster.ca, cuiyong@tsinghua.edu.cn, jianping@cernet.edu.cn

Abstract—Good user experiences in Mobile Augmented Reality
(MAR) applications require timely processing and rendering of
virtual objects on user devices. Today’s wearable AR devices
are limited in computation, storage, and battery lifetime. Edge
computing, where edge devices are employed to offload part or all
computation tasks, allows an acceleration of computation without
incurring excessive network latency. In this paper, we use acyclic
data flow graphs to model the computation and data flow in MAR
applications and aim to minimize the makespan of processing
input frames. Due to task dependencies and variable resource
availability, makespan minimization is proven to be NP-hard in
general. We design DPA, a polynomial-time heuristic algorithm
for this problem. For special data flow graphs including chain
or star, the algorithm can provide optimal solutions or solutions
with a constant approximation ratio. The effectiveness of DPA
has been evaluated using extensive simulations with realistic
workloads and resource availability measured from a prototype
implementation.

Index Terms—Edge computing; Mobile augmented reality;
Computation partitioning; Precedence constraint

I. INTRODUCTION

Mobile Augmented Reality (MAR) is gaining popularity

due to the wide availability of smartphones and wearable

devices in the past decade [1], [2]. Reports forecast that the

worldwide market size for AR is estimated to reach over USD

195 billion by 2025 [3]. In MAR applications, virtual objects

are overlaid over the physical world for the users to perceive

the augmented information as part of their surrounding envi-

ronments. Though application-specific, the virtual objects are

typically constructed based on camera, voice or other high rate

sensor inputs. For instance, a face recognition app running on

the smart glasses takes real-time video feeds from a front-

facing camera, performs face detection and recognition, and

then overlays the relevant information of people present in the

field of view onto a head-up display.

However, MAR poses significant challenges to today’s

wearable devices. First, the majority of MAR applications

are delay-sensitive [1]. Virtual objects are generally context-

dependent. Excessive delays in constructing and rendering

The corresponding author is Chaokun Zhang. This research is supported in
part by National Key R&D Program of China under Grant 2019YFB2102400,
in part by NSERC Discovery Program, in part by National Natural Science
Foundation of China under Grant 61872211,61832013.

the virtual objects make them irrelevant. Second, the con-

struction of virtual objects often relies on machine learning

algorithms to extract useful information from sensor inputs.

These inference tasks tend to be compute-intensive, and often

require a lot of storage space to accommodate necessary

models. Furthermore, MAR requires user interactions in real-

time [1]. As a result, existing standalone low- to medium-

end Augmented Reality (AR) devices in the market are not

suitable for handling delay-sensitive and compute-intensive

applications.

There has been much interest recently to offload compute-

intensive tasks to edge devices, termed Edge Computing (EC)

[4], to shorten their response time. Broadly speaking, edge

devices can be cellular base stations, enterprise or home Wi-

Fi access points, or even more powerful mobile phone devices.

Migrating heavy tasks to the EC device can reduce the com-

putational burden of AR devices. Compared to Mobile Cloud

Computing (MCC), offloading to edge devices incurs shorter

latency. Hence, it can improve the Quality of Experience

(QoE) in MAR applications.

Orthogonal to where computation is done, e.g., on the AR

device, on an edge device or in the cloud, another dimension

in the design space of MAR is whether the computation tasks

shall be entirely offloaded [5] or split between the AR device

and the edge device or cloud computing facilities [6]. Mobile

computation offloading can be thought of as a special case

of Mobile Computation Partitioning (MCP) [7] – the latter

provides fine-grained control and enables offloading portions

of tasks onto more powerful computation units to shorten the

completion time.

Existing works on MCP assume that the computation re-

source on offloaded sites is unlimited. This may be reasonable

when the offloaded computation runs on a high-end server or

a server cluster but is problematic when resource-limited edge

devices are considered. Assuming unlimited resources on the

edge leads to optimistic timing estimations. Moreover, many

works are based on fixed partitioning and ignore resource

variations such as bandwidth fluctuation and dynamic CPU

frequency or voltage scaling. Resource variability may lead

to excessive delays that degrade application performance or

violate safety guarantees.

In this paper, we consider the problem of computation parti-

tioning for delay-sensitive MAR applications in edge comput-978-1-7281-6887-6/20/$31.00 © 2020 IEEE

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

978-1-7281-6887-6/20/$31.00 ©2020 IEEE
Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:38:05 UTC from IEEE Xplore. Restrictions apply.

ing. Sensory inputs to an MAR application are organized in

frames (e.g., a frame in a real-time video stream or a segment

of sensor data). The computation tasks performed on each

frame can be modeled as a data flow graph. In the data flow

graph, tasks have precedence constraints, namely, a task cannot

be executed until its predecessors are completed [8]. Given the

computation workload of each task and the amount of data

flow between tasks, we aim to find the optimal partitioning

decision between the AR device and the EC device such that

the total completion time (formally called makespan) of each

frame is minimized subject to the availability of computation

and network resources.

Our contribution in this paper is three-fold. First, we

formulate the Makespan Minimization Computation Partition

(M2CP) problem under precedence constraints and time-

varying variables through intra-frame and inter-frame task

modeling. We show that it is an NP-hard problem.

Second, we show that for precedence constraints modeled

by chain or star parallel graphs, polynomial algorithms exist

that either give an exact solution or solutions with a constant

approximation ratio. Specifically, for applications that can be

modeled as a star parallel graph, an efficient algorithm called

EFS2 is proposed and is proven to achieve an approximation

ratio of 2
√
3. For general cycle-free data flow graphs, a

heuristic algorithm called DPA is proposed.

Third, we implement a prototype that includes a lightweight

profiler and a decision-maker using the proposed algorithm.

To overcome the difficulty of unknown resource demands, a

simple yet effective approach is adopted based on historical

data as initial inputs. We evaluate the performance of the

proposed algorithm with realistic workloads and resource

availability measured from the prototype implementation.

The rest of the paper is organized as follows. The related

work is discussed in Section II. In Section III, we present

the system model and formulate the makespan minimization

computation partition problem. We show that the problem is

NP-hard. In Section IV, polynomial algorithms are developed

for makespan minimization for two special cases. The heuristic

solution for the general data flow graphs is presented in

Section V. In Section VI, we evaluate the performance of

the algorithms based on the prototype. Finally, Section VII

concludes the paper.

II. RELATED WORK

Mobile computation offloading has gained much interest in

the research community and the industry in recent years. The

main benefit is to relieve resource competition and augment

mobile devices’ capabilities [7], [9], [10]. Essentially, mobile

computation is to adopt whole VM migration without any

partition [5], [11]–[13]. Such a coarse-grained approach is not

suitable for AR applications as sensory data is in fact generated

on mobile devices [14].

Unlike the offloading method, MCP provides a fine-grained

approach with better performance. For ease of implementation

and use, many MCPs use a fixed partitioning scheme [6], [15],

[16]. This requires developers to have a good understanding of

AR device

Sensors

EC device

Apps Display Apps

Fig. 1. Basic framework of an MAR system

computation and communication requirements to make sound

decisions. Furthermore, the fixed partition tends to be sub-

optimal in the presence of device heterogeneity and varying

resource availability.
The extended approach is to dynamically determine where

each task should be executed [17]–[22]. MAUI [17] is arguably

the first work that considers such an approach. In MAUI,

the partitions are manually tagged and computation tasks are

serialized. CloneCloud [18] uses an analyzer to give a feasible

partition. However, it involves a code migration approach [19]

that is not compatible with MAR apps based on data flow

characteristics. Odessa [20] first proposes the data flow based

partitioning approach for interactive perception applications

that can be naturally adapted to MAR. Structure of data flow

hence should be considered in dynamic partitioning problem.

In this dimension, MAUI [17] processes tasks in sequential

and CloneCloud [18] and Hermes [21] process tasks based on

a tree structure, while our MCP algorithm involves general

precedence constraints. Additionally, several computation par-

titioning approaches are devised for different edge computing

applications [23], [24] instead of MAR. The work in [22]

makes the unrealistic assumption that the resources on the EC

device are unlimited.

III. MODELS AND PROBLEM FORMULATION

In this section, we introduce the data flow programming

model and the problem formulation.

A. Data Flow Programming Model

Figure 1 shows the basic framework of an MAR system

that supports computation partitioning. Here, the EC device

can be a mobile phone or more powerful devices such as Wi-

Fi or cellular access points. Unlike high performance clusters

in data centers, EC devices are more constrained in available

resources. Transferring data between the AR and EC devices

incurs extra latency. Therefore, it is necessary to balance the

computation workload between the AR device and the EC

device.
MAR applications can be modeled by data flow graphs.

The vertices in the graph are processing steps called tasks and

the edges are connectors that represent the data dependencies

between tasks. Tasks within an application employ a shared-

nothing model: they share no state and interact only through

connectors. This programming model allows programmers to

express coarse-grained application parallelism while hiding

much of the complexity of parallel and distributed program-

ming from application developers. The data flow programming

model is a natural fit for MAR since it can easily capture

a series of operations on streaming data and facilitate the

partitioning of computation across multiple devices [20].

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:38:05 UTC from IEEE Xplore. Restrictions apply.

AR device

Feature values

Tracking
Image frame

capturing

RGB images

RoI positions

Labels

DetectImage

detection

Gray scale images

DetectCropping

& scaling

RoI positions

Classification

Gray-scale images

Recognition

mergence

RGB images

R
G

B
 i

m
ag

es

RoI positions

Task detection

Task recognition

Source

Display

Dummy node

Computation node

EC

device

Fig. 2. The data flow graph of a recognition app

In this paper, we assume that the data flow graph of a target

MAR application is represented by a Directed Acyclic Graph

(DAG), G = (V,A). This is not a restrictive assumption as a

data flow graph with recurrent edges can be rolled out into

a “feed-forward” graph. In graph G, each node i ∈ V is

associated with a task and its demand of CPU resource is

given by pi measured in the number of CPU cycles. An arc

a = 〈i, j〉 where {a|i, j ∈ V, and a ∈ A} represents the data

path from task i to task j. The amount of data from task i
to task j is given by ci,j . If task i and j reside on different

devices, ci,j is associated with a communication cost. The

precedence constraints are modeled in the DAG as directed

edges. Denote the direct predecessor set of task i as Γ−
i , where

Γ−
i = {h|〈h, i〉 ∈ A}. Therefore, task i cannot be scheduled

until all its direct predecessors in Γ−
i are completed. Similarly,

the direct successor set of task i is denoted by Γ+
i , where

Γ+
i = {j|〈i, j〉 ∈ A}. We introduce two dummy nodes [22],

a Source and a Display node that respectively connects to the

first task and all nodes without successors in G (as shown in

Figure 2). For MAR applications, both the Source and Display

nodes reside on the AR device. The source node takes input

data (e.g., sensing data) whereas results from tasks in the last

task shall be displayed locally the AR device.

An example data flow model and its DAG representation

are given in Figure 2 for a typical recognition app. In this

example, the source corresponds to a camera and the sink is

a head-up display on the AR device. In this application, the

input data consists of video frames from a camera. Each frame

will be processed following the same data flow graph. The

tasks in the data flow graph differ in computation complexity.

For instance, detection and tracking are relatively lightweight,

whereas recognition is compute-intensive due to data retrieval.

In the graph, data transferred along the edges includes large-

scale images such as original RGB images, grayscale images,

and Regions of Interest (RoIs) of possible objects, as well as

some feature values (e.g., Local Binary Patterns Histogram

(LBPH) for face recognition [25] and Scale-Invariant Feature

Transform (SIFT) for object recognition [26]).

B. Problem Formulation

Let xi denote the binary partition decision of task i. xi = 0
indicates that the task runs on the AR device (or locally);

otherwise, the task is executed on the EC device (or remotely)

if xi = 1. For task i, let tSi and tCi denote its starting time

and completion time, respectively. The processing time of task

i is hence tPi = tCi − tSi . Let fL and fR be the processing

speeds on the AR and EC devices, which are determined by the

reciprocal of the clock cycle (Hz). Both speeds can be profiled

online [27]. In general, it is reasonable to assume that EC

devices have a high processing power and thus fL < fR. Let b
be the available bandwidth in bit per second (bps). In addition

to partitioning, we are also interested in deciding the two

time-varying variables, i) yi(t) the amount of CPU resource

allocated to task i at time t, and ii) zi,j(t) the bandwidth

allocated to transfer data from task i to j if the two tasks

reside on different devices at time t.

Intra-frame Task Modeling: The precedence constraints

among the tasks can be characterized by,






tSi ≥ max
h∈Γ−

i

(

tCh + |xh − xi| tTh,i
)

Γ−
i 6= ∅

tSi =0 Γ−
i = ∅

∀i ∈ V. (1)

In other words, task i cannot start until all its predecessor

tasks finish, and data from its predecessors have been trans-

ferred to the device where task i is executed.
The constraints on the CPU resources on the AR and EC

devices are given by,
∑

i∈V

(1− xi)yi(t) ≤ fL ∀t ≥ 0, (2)

and
∑

i∈V

xiyi(t) ≤ fR ∀t ≥ 0, (3)

where yi(t) satisfies,
{

yi(t) = 0 t /∈
[

tSi , t
C
i

)

yi(t) ≥ 0 t ∈
[

tSi , t
C
i

) ∀i ∈ V. (4)

Furthermore, the CPU resource allocation for task i over

time should be equal to the demand of task i, that is,
∫ tCi

tS
i

yi(t)dt = pi ∀i ∈ V. (5)

Similar to CPU constraints (2) and (3), the bandwidth

(denoted by zi,j(t)) allocated to each task pair is constrained

by the total available bandwidth,
∑

〈i,j〉∈A

zi,j(t) ≤ b ∀t ≥ 0, (6)

where zi,j(t) satisfies,
{

zi,j(t) = 0 t /∈
[

tCi , t
C
i + tTi,j

)

zi,j(t) ≥ 0 t ∈
[

tCi , t
C
i + tTi,j

) ∀〈i, j〉 ∈ A, (7)

where tTi,j is the transmission time from task i to task j.
Additionally, the data transferred from task i to j if they

are executed on different devices satisfies,
∫ tCi +tTi,j

tC
i

zi,j(t)dt = |xi − xj |ci,j ∀〈i, j〉 ∈ A. (8)

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:38:05 UTC from IEEE Xplore. Restrictions apply.

j-1 j k k+1...

Fig. 3. A chain data flow graph

Inter-frame Task Modeling: Let τ be the deadline for

each frame. As the result of high temporal locality in video

streams, it is often sufficient to process only one of several

consecutive frames (called Group Of Pictures, or GOP) [28].

We introduce n as the number of such consecutive frames.

The delay constraint can thus be expressed as,

max
i∈V

tCi ≤ nτ. (9)

Let tC
′

i and x′
i be the completion time and the partition

decision of task i in the previous frame. If the corresponding

device is running a task of the previous frame before the

current task start, the current task j will be discarded because

of the limited resource. Thus, we have,

tSj ≥ tC
′

i , if x′
i = xj . (10)

That is, the constraint holds only if task j in the current frame

and task i in the previous frame are running on the same

device.

Makespan Minimization: We are now in the position to

formulate the Makespan Minimization with Computation Par-

titioning (M2CP) problem. We have,

M2CP : min max
i∈V

tCi (11)

s.t. (1)− (10)

xi ∈ {0, 1}, ∀i ∈ V (12)

xSource = 0, xDisplay = 0. (13)

Clearly, M2CP is a Mixed Integer Programming (MIP)

problem with both binary and continuous variables. In fact, in

Section IV, we show that M2CP is NP-hard even for simple

data flow graphs such as star (or parallel) tasks. Therefore,

M2CP is NP-hard for general DAG data flow graphs.

IV. POLYNOMIAL ALGORITHMS FOR SPECIAL DATA FLOW

GRAPHS

In this section, we first simplify the problem under se-

quential scheduling policies. Under this assumption, we turn

to two special cases for M2CP with precedence constraints:

chain data flow (Figure 3) and star data flow (Figure 4). We

show that even for a simple data flow graph as in Figure 4,

M2CP is NP-hard. However, we show that a polynomial-time

algorithm exists for this case with a constant approximation

ratio. Solutions to the chain and the star precedence are

subsequently used as building blocks in devising a heuristics

to M2CP for general data flow graphs.

0

2 3 N-2 N-11 N...

Fig. 4. A data flow graph with a root task and multiple successors (called
star)

A. Simplification under Sequential Scheduling Policies

In the formulation of M2CP, we allow multiple tasks to

share the CPU resources and network resources on both AR

and EC devices. Two types of parallelism can be exploited

to improve data throughput of AR applications, namely, data

parallelism and pipeline parallelism [20]. However, both forms

of parallelism would not benefit the makespan of processing

a single frame [29]. In fact, sequential scheduling policies are

known to minimize makespan on a single resource. Therefore,

in the subsequent discussion, we limit the allocation of each

resource to only one task at a time1. As a result, (2)–(4) can

be simplified as,

yi(t) =

{

0 t /∈
[

tSi , t
C
i

)

(1− xi)fL + xifR t ∈
[

tSi , t
C
i

) ∀i ∈ V, (14)

and (6)–(7) can be simplified as,

zi,j(t) =

{

0 t /∈
[

tCi , t
C
i + tTi,j

)

b t ∈
[

tCi , t
C
i + tTi,j

) ∀〈i, j〉 ∈ A. (15)

As can be seen from (14) and (15), in theory, the optimal

case is that yi(t) and zi,j(t) are only related to the frequency

fL or fR and bandwidth b, instead of time. We hence reduce

(5) and (8) to

tPi = tCi − tSi = (1− xi)
pi
fL

+ xi

pi
fR

∀i ∈ V, (16)

and

tTi,j = |xi − xj |
ci,j
b

∀〈i, j〉 ∈ A. (17)

Under the sequential scheduling policy, we now consider

the two special cases.

B. Chain Data Flow Graph

With the chain precedence, tasks have to be scheduled one

after another. Therefore, the scheduling decision is straightfor-

ward. The only decision variables in M2CP are the partition

variables xi’s. It has been proven in [30], [31] that the optimal

partition can be found in polynomial time. In particular, given

non-zero network transfer delay, it can be shown that if task

j and k (j ≤ k) are executed on the EC device, all tasks

between j and k on the chain shall be executed on the device

1In the simplified formulation, parallelism still exists between the AR and
EC devices, and between computation and communication as they correspond
to different resources.

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:38:05 UTC from IEEE Xplore. Restrictions apply.

is in the optimal partitioning as well. As a result, the minimum

makespan and the optimal partition can be computed as,

min
j≤k

∑

i<j

pi
fL

+
cj−1,j

b
+

∑

i∈[j,k]

pi
fR

+
ck,k+1

b
+
∑

i>k

pi
fL

, (18)

where c0,1 = cN,N+1 = 0.

C. Star Data Flow Graph

In the star data flow graph in Figure 4, tasks 1 – N
share a common predecessor. We call the root task 0. After

the completion of task 0, successor tasks can be scheduled

in parallel on different devices. In absence of communica-

tion costs, M2CP is equivalent to the Q2||Cmax problem,

where parallel tasks are scheduled on two uniform processors

at different speeds and the problem asks to minimize the

makespan Cmax. Q2||Cmax is known to be NP-hard [32].

Thus, M2CP is NP-hard as well. Both the Longest Processing

Time (LPT) schedule algorithm [33] and the list schedule

algorithm [34] provide constant approximation ratios algo-

rithms to Q2||Cmax. However, when the network bandwidth

is finite between the AR and the EC devices, the total time

to execute a task (including both the communication time if

any and the computation time) on different devices becomes

“unrelated” (in the sense that the total time the task takes on

different devices is no longer proportional to the processor

speeds). This makes M2CP with star data flow similar to

R2||Cmax, i.e., minimizing makespan for parallel tasks on

unrelated processors.

In [35], the Efficiency First Scheduling (EFS) algorithm was

proposed to determine the schedule of parallel tasks on M
unrelated processors. EFS first computes the efficiency of task

i on processor p, p ∈ M . Each processor keeps a list of all

tasks in the non-increasing order of their efficiency. It further

maintains the workload wp of tasks assigned to processor p
so far. A processor is set to be inactive if either it has no

more unassigned task in its list or the remaining unassigned

tasks all have efficiencies lower than a threshold. A task is

scheduled on the active processor p with the least wp. EFS is

a polynomial time algorithm and has been proven to attain a

constant approximation ratio [35].

Scheduling parallel tasks with star precedence constraints

and communication costs are different from R2||Cmax in

two aspects. First, the time to complete a task on a device

depends on which device its precedent task is executed. If

both are on the same device, the makespan is solely the

computation time. Otherwise, the communication time needs

to be considered. Second, communication and computation can

happen concurrently for different tasks. Thus, the makespan of

assigned tasks on the EC device is not naively the sum of all

computation time. For example, consider task 0 is scheduled

on the AR device while task 1 and 2 are currently assigned to

the EC device. The makespan on the EC device is given by

c0,1
b

+max(
p1
fR

,
c0,2
b

) +
p2
fR

. (19)

The EFS algorithm [35] was proposed to determine the

schedule of parallel tasks on the unrelated processors. We next

propose EFS2, an adaption of EFS, for task scheduling on

two uniform devices with star precedence and communication

costs.

Let µi,L and µi,R be the processing time of the ith task on

the AR device (denoted as “L”) and the EC device (denoted

as “R”) (i ∈ V), respectively. Therefore,










µi,L =
pi
fL

+ |xi − xj |
ci,j
b

µi,R =
pi
fR

+ |xi − xj |
ci,j
b

i ∈ V, 〈i, j〉 ∈ A. (20)

In Figure 4, both µi,L and µi,R (i = 1, 2, . . . , N) are

uniquely determined once the partition of its predecessor is

known. Denote the efficiency of the ith task on the AR and

EC devices as ei,L and ei,R, respectively,














ei,L =
min{µi,L, µi,R}

µi,L

ei,R =
min{µi,L, µi,R}

µi,R

i ∈ V. (21)

Let ΓR (ΓL) be the set of tasks currently assigned to the

EC (AR) device. Denote the workload of the tasks in ΓR (ΓL)

by wR (wL). If task 0 runs on the AR device, after assigning

a new task j to either device, the workloads are updated as,
{

wL = wL +
pj

fL
(1− xj)

wR = max
(

wR,
∑

i∈ΓR

c0,i
b

)

+
pj

fR
xj

. (22)

Similarly, if task 0 runs on the EC device, after assigning

a new task j to either device, the workloads are updated as,
{

wL = max
(

wL,
∑

i∈ΓL

c0,i
b

)

+
pj

fL
(1− xj)

wR = wR +
pj

fR
xj

. (23)

The recursion in the second equation in (22) (or in the first

equation in (23)) is due to the fact that transmission times are

additive, and the computation of a task can proceed only when

the required data has been transferred from the AR device.

Algorithm 1 summarizes the proposed EFS2 algorithm. It

extends the EFS algorithm by consideration of communication

time to transfer data between the root task and the successor

tasks if assigned to different devices. AM , an assignment

function, indicates the partition decision. In EFS2, tasks are

assigned to an active device with the least workload (wR

or wL) thus far. The threshold parameter η controls the

percentage of tasks running on the AR device. If η is set too

high, most tasks will run on the EC device. In the algorithm,

we choose η =
√
3
2 as explained in Theorem 1. It is easy

to show that the computation complexity of EFS2 is O(N2)
since sorting requires O(N logN) time and the calculation of

wL or wR requires O(N). We can further show that EFS2

has a constant approximation ratio. Formally, let Π∗ and Π be

the schedules by the optimal and the EFS2 scheduling. The

makespans of Π∗ and Π are tCΠ∗ and tCΠ , respectively. We can

show that,

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:38:05 UTC from IEEE Xplore. Restrictions apply.

Theorem 1. The EFS2 algorithm for tasks with star prece-

dence constraint and communication costs satisfies,

tCΠ ≤ 2
√
3tCΠ∗ , (24)

if and only if the threshold of the active device satisfies η =√
3
2 .

Due to the page limitation, we only give a proof sketch

here.

Proof. Let z be the task that finishes the last in EFS2. It has,

tCΠ = µz,AΠ(z) + tSz . (25)

Next, with Lemma 2 and Lemma 6 in [35], it can be proved

that the inequalities for the approximation analysis of each

part in (25) hold, namely

µz,AΠ(z) ≤
1

η
tCΠ∗ , (26)

and

tSz ≤
(

2η +
1

2η

)

tCΠ∗ . (27)

According to (25), (26) and (27), we conclude that when 2η =√
3, tCΠ satisfies the optimal value 2

√
3tCΠ∗ .

V. SOLUTION APPROACH TO M2CP FOR GENERAL DATA

FLOW GRAPHS

As discussed in Section IV, M2CP is NP-hard. In this

section, we develop a heuristic solution approach to general

data flow graphs modeled as DAGs. We use the polynomial

algorithms for chain and star graphs as building blocks. The

proposed Dynamic Planning Algorithm (DPA) is illustrated in

Algorithm 2. Let F , E ,S be the sets for tasks whose schedules

have been decided, tasks that are eligible to be scheduled,

Algorithm 1 EFS2 algorithm

Input: N, ťPi , t̂
P
i , t

T
i,j , i ∈ V, 〈i, j〉 ∈ A;

Output: AM ;

1: Compute each ei,L and ei,R according to (21), i ∈ [1, N];
2: Create a list of the tasks i = 1, 2, · · · , N sorted in non-

decreasing order of each ei,L and ei,R;

3: Designate all tasks as “unassigned” and both devices as

“active”;

4: while not all tasks are assigned do

5: Find the minimal value between wL and wR which

device is denoted as M,M ∈ {L,R};
6: Find the next unassigned task i on M ’s list of tasks;

7: if i does not exist or ei,L < η then

8: Mark device M as “inactive”;

9: else

10: AM(i) = M ;

11: Designate task i as being “assigned”;

12: tSi = wM ;

13: Update wM according to (22) or (23);

14: end if

15: end while

namely the tasks whose precedent tasks have completed, and

tasks whose schedules to be determined next. CurrentTime is

used to keep track of the progress of the virtual schedule. It

scans the DAG from the source node to the sink node and

identifies groups of tasks to be scheduled next. As units of

scheduling, we focus on groups of tasks that either follow

a chain or can be scheduled in parallel (without precedence

constraints). The computation complexity of DPA for each

frame is related to that of the two base algorithms. Hence

it is O(MN2) if we process the M frames with N tasks each

frame.

Whether a task belongs to a chain or a star depends the

schedule in place and its execution. Take the example in Figure

5. Intuitively, task 7, task 8, and task 9 can be treated as star

tasks since they are of the same shortest path distance from

the source node. However, from a scheduling viewpoint, this

is not always the case and is highly dependent on the amount

of computation and data transfer of the previous tasks and

their assignment. For example, consider the case when task 5

and task 6 are executed remotely and their sibling task 4 is

executed locally. Suppose that the two tasks running on the

remote device are finished before task 4. The idle EC device

will decide that task 8 and 9 can be scheduled as a star data

flow while task 7 is not yet eligible.

Algorithm 2 DPA algorithm

Input: All tasks i, i ∈ V
Output: makespan, xi, i ∈ V

1: CurrentT ime = 0;

2: F = {0}; E = Γ+
0

; S = ∅;
3: while E 6= ∅ do

4: Compute tSi and tCi , i ∈ E ;

5: if |E| == 1 then

6: Mark task i as a member in chain;

7: E = Γ+
i ; S ← i;

8: else

9: Sort tasks in E ;

10: for each task j ∈ E do

11: if tSj < maxi∈S tCi then

12: S ← i;
13: end if

14: end for

15: if there is only one non-member task k in S then

16: Mark task k as a member in chain; E = Γ+
k ;

17: end if

18: end if

19: if S is a chain then

20: Call the chain algorithm [30] for the chain data flow;

21: else

22: Call the EFS2 algorithm for the star data flow;

23: end if

24: Update all variables accordingly;

25: end while

26: makespan = CurrentT ime;

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:38:05 UTC from IEEE Xplore. Restrictions apply.

1 2 11 123 5 10

4

6

7

8

9

13

Chain

14

Stars

Chain

Fig. 5. An example that DPA divides the general DAG into the chain and/or
the star data flow graphs as building blocks

VI. EVALUATION

We have implemented the proposed algorithms on the

Android platform as a demonstration. Evaluations are done

using both data collected from the real AR and EC devices

using simulations.

A. Prototype Implementation

The partitioning decision module consists of two parts: the

profiler and the decision-maker. Both of them run on separate

threads on each device. The profiler is lightweight since it

just logs the available CPU cycles and network bandwidth.

The profile information is sent by piggy-backing transfered

data to the other device for synchronization. The decision-

maker uses the profiles to make partition decisions (a binary

vector) following the DPA algorithm. Its overhead is based on

the complexity of DPA and is negligible when the number of

tasks is not too large [36]. At the beginning of each task, the

system determines where the task is to run based on the result

of the decision-maker. If the respective decision variable is 0,

it invokes the task on the AR device; or on the EC device,

otherwise.

B. Setup

Environment: A pair of Recon Jet smart glasses [37] are

used as an AR device and a Huawei P30 phone running

an Android operating system serves as an EC device. The

maximum CPU frequencies of the Recon Jet smart glasses

and the smartphone are 1.0GHz and 2.6GHz, respectively. The

maximum transmission bandwidth of the Bluetooth radio used

to communicate between the two devices is 6.4Mbps. We set

the deadline for the app to run at 120ms and the number of

GOP to 25.

Data Flow Graph: For evaluation, we consider a data flow

graph at two different granularities as shown in Figure 2.

• A two-stage data flow consisting of a detection task that

detects every object (including suspected objects) in the

image and a recognition task that recognizes the objects

from an existing database.

• A fine-grained data flow, where the detection and the

recognition tasks are further divided into 5 and 7 fine-

grained tasks according to the data flow graph in Figure

2, respectively.

Baselines: In addition to DPA, three algorithms have been

implemented for comparison.

• FS: The partition decision follows that of DPA but the

scheduling of tasks on the AR and EC devices assumes

fair sharing of CPU resources. Network bandwidth is

allocated proportionally according to the amount of data

transferred between the communicating tasks. The way

to allocate resources is the same as that of [22].

• Cluster: Partitioning is decided by a heuristic clustering

method in [30]. It first converts a DAG data flow graph

to a tree graph by pruning links with lighter costs. Next,

computation partitioning is done by first sorting the sum

cost of the communication and the computation on the

EC device, and then distributing the load roughly equally

between the two devices. Since no specific is provided

in [30] how the tasks on each device are scheduled, we

assume the same mechanism is adopted as in DPA.

• Optimal: For the star data flow graph with limited tasks,

we find the optimal makespan by solving M2CP directly

using exhaustive search.

Partitioning Schemes: We also evaluate three naive schemes

for comparing our dynamic partitioning algorithm, namely,

Local where all tasks are executed in the AR device, Remote

where all tasks are offloaded to the EC device, and Fixed

where the detection and recognition tasks are executed on the

AR and the EC devices, respectively.

Profiling: As inputs to M2CP, we first record the response

time of each task by measuring the running time of the

CPU core. The computation demand of each task is then

estimated by the product of the response time and the CPU

frequency of the associated device. The reason for not using

the directly measured response time is because it is related to

the computation capability of each device.

In practice, however, we may not know the demand of a

task before its execution is completed when the task execution

time is input sensitive. Alternatively, for online profiling, we

use historical demands to predict the computation demand

of the current frame. This approach is reasonable because

the computation demands of neighboring frames are likely

to be similar. We first use the approach mentioned at the

beginning to record computation demands. During online

profiling afterward, the computation demand of the current

task (p̄i) is updated using p̄i = αpi + (1 − α)p̄′i, where p̄′i is

the computation demand from the previous frames. The result

is shown in Figure 6(a), where parameter α is empirically set

to be 7
8 in the experiments. In the figure, the computation

demand of task detection is between 60− 80M cycles, while

the demand of task recognition is between 100−200M cycles.

Similarly, the result of the data demand is shown in Figure

6(b). In the figure, it shows the data size of task detection and

task recognition. It can be further divided into two groups,

Grayscale RoI images, typically, 50 − 70KB per frame, and

small amount of transferred data between tasks, such as object

positions and feature values, around 0 − 10KB per frame. In

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:38:05 UTC from IEEE Xplore. Restrictions apply.

0 200 400 600 800 1000

Frame

0

50

100

150

200

C
P

U
 d

e
m

a
n

d
s
 o

f
ta

s
k
s
 (

M
 c

y
c
le

s
)

Task Recognition
Task Detection

(a) Computation demand profiling

0 50 100 150 200 250 300 350

Frame

0

10

20

30

40

50

60

70

80

90

100

T
ra

n
s
fe

r
d

a
ta

 s
iz

e
 (

K
B

)

RoI images

Features

(b) Data demand profiling

Fig. 6. An example of task demands profiling

addition, the data transferred from the source and the detection

tasks are 320× 240 RGB images at 225KB per frame.

C. Evaluation Results

Computation Partitioning: For the two-stage partitioning, in

functionality evaluation, we vary the resource availability on

AR, EC and the network as detailed in Table I. In all scenarios,

DPA achieves the optimal makespan. Figure 7 shows the

percentage of the detection and recognition tasks running on

the EC device. Zero percent means the task always runs on

the AR device, whereas one hundred percent means it always

runs on the EC device. As the resource demand of each task

varies from frame to frame, with fixed resource availability, the

outcome of computation partition can still be different. From

Figure 7, we observe that for most frames, detection tasks

run on the AR device. However, as the available resource

on the AR device reduces to 40%, the detection tasks are

offloaded to the EC device instead among 20% of frames,

while the recognition tasks for all frames are executed on the

EC device in this case. The small percentage is because the

detection task is lightweight in CPU demands but has a high

data demand (RGB raw images from the camera as input).

Reducing the availability of EC computation resource to 40%
has a more dramatic effect on the partitioning, where both

tasks are now running on the AR device. This is because the

prolonged computation time together with the latency incurred

by transferring data over the network makes offloading less

desirable. The effect of reducing network resources is more

complicated. In this case, the latency in transferring the RoI

blocks of images and the results after recognition increases.

As a result, fewer recognition tasks run on the EC device.

Furthermore, the partitions of the fine-grained data flow with

the 100% available resource are shown in Figure 8. In the

figure, each frame contains 14 tasks. The setting is the same

as that of the two-stage data flow. However, the partitioning

TABLE I
RESOURCE AVAILABILITY SETTING FOR THE DATA FLOW GRAPH

Labels CPU res. on

AR

Bandwidth CPU res. on

EC

Full 100% 100% 100%

40% AR 40% 100% 100%

40% Net 100% 40% 100%

40% EC 100% 100% 40%

Full 40%AR 40%Net 40%EC

P
a
rt

it
io

n
s
 (

a
v
g
)

0

0.2

0.4

0.6

0.8

1

1.2 Task detection

Task recognition

Fig. 7. Partitions for the two-stage
data flow graph

Each task with fully available resources

1 2 3 4 5 6 7 8 9 10 11 12 13 14

P
a
rt

it
io

n
s
 (

a
v
g
)

0

0.2

0.4

0.6

0.8

1

Fig. 8. Partitions for the fine-grained
data flow graph

result is different from that in Figure 7. Task 2 always executes

on the AR device due to a large RGB image transfer delay

and a relatively small computation demand. Less than 50% of

frames belonging to task 3−6 execute on the EC device. The

percentage of remote executions increases for the recognition

tasks, but it is still lower than 80% compare to Figure 7.

We also observe that the star tasks in Figure 8 have different

partition outcomes (e.g., task 3−5) due to workload balancing.

Interestingly, it is preferable to run task 13 remotely comparing

to task 12. Similarly, two of three predecessors of task 13 (i.e.,

task 10 and task 11) tend to execute on the EC device while

task 12 executes on the AR device due to workload balancing.

Performance with Variable Resources: In this set of ex-

periments, we vary the availability of one resource (AR, EC

or network) and fix the rest to evaluate the performance of

different algorithms on the DAG data flow graph. Due to

its computation complexity, we are unable to determine the

optimal solutions using exhaustive search.

Figure 9(a) shows the makespan when the available com-

putation resource of the local AR device varies from 1% to

100%. DPA achieves the smallest makespan. As expected,

as the available computation resource increases, makespan

decreases for all three algorithms. We found in the figure,

Cluster tends to assign more tasks on the AR device and

therefore incurs longer makespan when the resource on the

AR device is less. In some cases, under Cluster, the app stops

working since the makespan exceeds the deadline. Figure 9(b)

shows the makespan achieved when the available network

bandwidth varies from 1% to 100%. Ideally, more available

network bandwidth should imply shorter makespan. However,

we observe when the network bandwidth is small, the relation

is not monotone with all three algorithms. This is because

smaller network bandwidth tends to put more tasks on the

AR device by reducing the communication latency, which in

turn increases the computation time. The trade-off between

communication and computation is more pronounced in this

scenario. However, as more network bandwidth is available,

we indeed observe close to monotonic behaviors. Again, in

this case, DPA, despite being sub-optimal (as evident from

its non-monotonicity) outperforms the other two algorithms.

Finally, in Figure 9(c), the computation resource on the EC

device varies from 1% to 100%. Up to until around 60%
resource availability on the EC device, the makespans achieved

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:38:05 UTC from IEEE Xplore. Restrictions apply.

20 40 60 80 100

Percentage of the available AR CPU resource (%)

0

20

40

60

80

100

120
A

v
e
ra

g
e
 m

a
k
e
s
p
a
n
 p

e
r

G
O

P
 (

m
s
)

DPA

FS

Cluster

(a) Under the AR workload

20 40 60 80 100

Percentage of the available bandwidth (%)

0

20

40

60

80

100

120

A
v
e
ra

g
e
 m

a
k
e
s
p
a
n
 p

e
r

G
O

P
 (

m
s
)

DPA

FS

Cluster

(b) Under the bandwidth workload

20 40 60 80 100

Percentage of the available EC CPU resource (%)

0

20

40

60

80

100

120

A
v
e
ra

g
e
 m

a
k
e
s
p
a
n
 p

e
r

G
O

P
 (

m
s
)

DPA

FS

Cluster

(c) Under the EC workload

Fig. 9. Comparisons of different algorithms on the fine-grained data flow graph

DPA Local Fixed Remote

Different partitioning schemes

0

20

40

60

80

100

120

A
v
e
ra

g
e
 m

a
k
e
s
p
a
n
 p

e
r

G
O

P
 (

m
s
)

Full

40% AR

40% Net

40% EC

Fig. 10. Comparisons of different partitioning schemes

by Cluster and DPA are comparable and are roughly constant.

This is because all tasks run on the AR devices. However, as

more resource is available on the EC device, some tasks are

offloaded to the EC device. From the figure, the makespan of

Cluster rises after 60% since the algorithm tries to balance

the load and may transfer network-intensive tasks to EC. DPA

is more adept at utilizing the resource on the EC device and

achieves a lower makespan compared to the other algorithms.

Effects of Different Partitioning Schemes: We evaluate the

performance of different partitioning schemes under different

resource availability. The fine-grained data flow graph is

utilized with resource availability shown in Table I. The results

are shown in Figure 10. From the figure, DPA can achieve the

best performance regardless of resource availability. Moreover,

DPA degrades gracefully even when available resources drop

significantly at 30% increment in latency in the worst case. In

contrast, when the amount of available resources decreases,

other partitioning schemes perform poorly. The Local and

Remote partitioning schemes are susceptible to the compu-

tation resources on AR and EC while the Fixed partitioning

scheme is affected by all resources as shown in the figure. In

particular, when the network resource available drops below

40%, executions using Fixed and Remote can no longer meet

the deadline. Note that the performance of Local is not affected

by the varying availability of network or EC resources since

the execution is on the local device only.

Impacts of Precedent Constraints: In this set of exper-

iments, we evaluate the makespans achieved by DPA, FS

and Cluster algorithms for chain and star data flow graphs.

The makespans achieved by FS and Cluster algorithms are

normalized by that of DPA. In the experiments, we vary the

CPU resource availability on the AR and EC devices and the

bandwidth availability from 20% to 100% and investigate their

impact on the partitioning decisions.

From Figure 11(a) and 11(b), all algorithms perform identi-

cally for the chain data flow regardless of resource availability.

This is expected due to the strict precedence constraints. For

the star data flow, on the other hand, we see from the figures

that both algorithms have 40% − 60% higher makespans.

Comparing the two figures, it can be observed that lower

resource availability on the AR device has more negative

impacts on the performance of Cluster. Under the low available

CPU resource of AR, to minimize the makespan, almost all the

partitions should be uploaded onto the EC device. However,

Cluster initializes by putting all partitions on the AR device

and prunes edges in the data flow graph to make it a tree. It

then greedily tries to balance the loads between the AR and

EC devices. As a result, some tasks remain to be executed on

the AR device resulting in a longer makespan.

Empirical Validation of Theorem 1: We compare the

performance of the proposed EFS2 algorithm with the optimal

solution in handling star tasks modeled by a star data flow

graph. Figure 12 shows the ratio between the makespans

achieved by the EFS2 algorithm and the optimal solution to

problem M2PC for different frames. The theoretical bound in

Theorem 1 is included as the red line. It is clear from the

figure that the makespans attained by EFS2 is close to that of

the optimal and are always lower than the upper bound.

VII. CONCLUSION

In this paper, we investigated delay-sensitive computation

partitioning for MAR applications in edge computing. Mod-

eled as a data flow graph, the makespan minimization problem

is NP-hard due to the complex dependency among tasks and

variable resource constraints in both computation and com-

munication. We designed DPA, a polynomial-time algorithm

for this problem. For special data flow graphs modeled as a

chain or a star, the algorithm can provide optimal solutions

or solutions with a constant approximation ratio. Evaluations

under realistic settings demonstrated the effectiveness of DPA

and that it outperformed other heuristic policies.

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:38:05 UTC from IEEE Xplore. Restrictions apply.

Percentage of the available resource (%)

20 40 60 80 100

M
a
k
e
s
p
a
n
 r

a
ti
o

0

1

2

3

4

Star: Varying AR CPU resource

Star: Varying bandwidth

Star: Varying EC CPU resource

Chain

(a) Makespan of FS (normalized)

Percentage of the available resource (%)

20 40 60 80 100

M
a
k
e
s
p
a
n
 r

a
ti
o

0

0.5

1

1.5

2

2.5

3

Star: Varying AR CPU resource

Star: Varying bandwidth

Star: Varying EC CPU resource

Chain

(b) Makespan of Cluster (normalized)

Fig. 11. Comparisons of FS, Cluster and DPA in chain and star with different resource availability

0 200 400 600 800 1000

Frames

1

2

3

4

M
a
k
e
s
p
a
n
 r

a
ti
o
 f
o
r

s
ta

r
ta

s
k
s DPA

Upper bound

Fig. 12. Makespan ratio for star tasks, DPA vs.
Optimal

REFERENCES

[1] T. Braud, F. H. Bijarbooneh, D. Chatzopoulos, and P. Hui, “Future
networking challenges: The case of mobile augmented reality,” in Proc.

IEEE ICDCS’17, Jun. 2017, pp. 1796–1807.

[2] T. Starner, “The challenges of wearable computing: Part 1,” IEEE

MICRO, vol. 21, no. 4, pp. 44–52, 2001.

[3] S. Liu. (2019, Dec.) Augmented reality (AR) market
size worldwide in 2017, 2018 and 2025. [Online].
Available: https://www.statista.com/statistics/897587/world-augmented-
reality-market-value/

[4] P. Mach and Z. Becvar, “Mobile edge computing: A survey on architec-
ture and computation offloading,” IEEE Communications Surveys and

Tutorials, vol. 19, no. 3, pp. 1628–1656, 2017.

[5] L. Liu, H. Li, and M. Gruteser, “Edge assisted real-time object detec-
tion for mobile augmented reality,” in ACM Mobicom’19, Los Cabos,
Mexico, Oct. 2019.

[6] Y. Kang, J. Hauswald, C. Gao, A. Rovinski, T. Mudge, J. Mars, and
L. Tang, “Neurosurgeon: Collaborative intelligence between the cloud
and mobile edge,” in Proc. ACM ASPLOS’17, Xi’an, China, Apr. 2017,
pp. 615–629.

[7] K. Kumar, J. Liu, and Y.-H. Lu, “A survey of computation offloading
for mobile systems,” Mobile Networks and Applications, vol. 18, no. 1,
pp. 129–140, 2013.

[8] C. Zhang, Y. Cui, R. Zheng, J. E, and J. Wu, “Multi-resource partial-
ordered task scheduling in cloud computing,” in Proc. IEEE IWQoS’16,
Jun. 2016.

[9] N. Fernando, S. W. Loke, and W. Rahayu, “Mobile cloud computing:
A survey,” Future Generation Computer Systems, vol. 29, no. 1, pp.
84–106, 2013.

[10] H. T. Dinh, C. Lee, D. Niyato, and P. Wang, “A survey of mobile cloud
computing: Architecture, applications, and approaches,” Wiley Wireless

Communications and Mobile Computing, vol. 13, no. 18, pp. 1587–1611,
2013.

[11] W. Zhang, Y. Wen, K. Guan, D. Kilper, H. Luo, and D. O. Wu, “Energy-
optimal mobile cloud computing under stochastic wireless channel,”
IEEE TWC, vol. 12, no. 9, pp. 4569–4581, 2013.

[12] S. Osman, D. Subhraveti, G. Su, and J. Nieh, “The design and imple-
mentation of Zap: A system for migrating computing environments,” in
Proc. USENIX OSDI’02, Dec. 2002, pp. 361–376.

[13] M. Liu and Y. Liu, “Price-based distributed offloading for mobile-
Edge computing with computation capacity constraints,” IEEE Wireless

Communications Letters, vol. 7, no. 3, pp. 420–423, 2018.

[14] M. Halpern, Y. Zhu, and V. J. Reddi, “Mobile cpu’s rise to power:
Quantifying the impact of generational mobile cpu design trends on
performance, energy, and user satisfaction,” in Proc. IEEE HPCA’16,
Barcelona, Spain, Mar. 2016, pp. 64–76.

[15] R. Newton, S. Toledo, L. Girod, S. Madden, and H. Balakrishnan,
“Wishbone: Profile-based partitioning for sensornet applications,” in
Proc. USENIX NSDI’09, Apr. 2009, p. 14.

[16] G. C. Hunt and M. L. Scott, “The Coign automatic distributed partition-
ing system,” in Proc. USENIX OSDI’99, Feb. 1999, pp. 187–200.

[17] E. Cuervo, A. Balasubramanian, and D. ki Cho, “MAUI: Making
smartphones last longer with code offload,” in Proc. ACM Mobisys’10,
Jun. 2010, pp. 49–62.

[18] B.-G. Chun, S. Ihm, P. Maniatis, M. Naik, and A. Patti, “Clonecloud:
Elastic execution between mobile device and cloud,” in ACM Computer

systems’11, Salzburg, Austria, Apr. 2011, pp. 301–314.
[19] C. Wang and Z. Li, “Parametric analysis for adaptive computation

offloading,” in PLDI’04: Proceedings of the ACM SIGPLAN 2004

conference on Programming language design and implementation, Jun.
2004, pp. 119–130.

[20] M.-R. Ra, A. Sheth, L. Mummert, P. Pillai, D. Wetherall, and R. Govin-
dan, “Odessa: Enabling interactive perception applications on mobile
devices,” in Proc. ACM MobiSys’11, Jun. 2011, pp. 43–56.

[21] Y.-H. Kao, B. Krishnamachari, M.-R. Ra, and F. Bai, “Hermes: Latency
optimal task assignment for resource-constrained mobile computing,”
IEEE Transactions on Mobile Computing, vol. 16, no. 11, pp. 3056–
3069, 2017.

[22] L. Yang, J. Cao, S. Tang, T. Li, and A. T. Chan, “A framework for
partitioning and execution of data stream applications in mobile cloud
computing,” in Proc. IEEE CLOUD’12, Jun. 2012, pp. 794–802.

[23] J. Cao, L. Yang, and J. Cao, “Revisiting computation partitioning in
future 5G-based edge computing environments,” IEEE Internet of Things

Journal, vol. 6, no. 2, pp. 2427–2438, 2019.
[24] L. Yang, B. Liu, J. Cao, Y. Sahni, and Z. Wang, “Joint computation

partitioning and resource allocation for latency sensitive applications in
mobile edge clouds,” in IEEE CLOUD’17, Honolulu, CA, USA, Jun.
2017.

[25] T. Ahonen, A. Hadid, and M. Pietikainen, “Face recognition with local
binary patterns,” in Proc. Springer ECCV’04, May 2004, pp. 469–481.

[26] D. G. Lowe, “Distinctive image features from scale-invariant keypoints,”
IJCV, vol. 60, no. 2, pp. 91–110, 2004.

[27] S. Kosta, A. Aucinas, P. Hui, R. Mortier, and X. Zhang, “Thinkair:
Dynamic resource allocation and parallel execution in the cloud for
mobile code offloading,” in Proc. IEEE Infocom’12, Mar. 2012, pp. 945–
953.

[28] W. Zhang, B. Han, and P. Hui, “On the networking challenges of mobile
augmented reality,” in ACM VR/AR Network’17, Los Angeles, CA, Aug.
2017, pp. 24–29.

[29] F. R. Dogar, T. Karagiannis, H. Ballani, and A. Rowstron, “Decentral-
ized task-aware scheduling for data center networks,” in Proc. ACM

SIGCOMM’14, Chicago, IL, Aug. 2014, pp. 431–442.
[30] M. Jia, J. Cao, and L. Yang, “Heuristic offloading of concurrent tasks

for computation-intensive applications in mobile cloud computing,” in
Proc. IEEE INFOCOM Workshop on Mobile Cloud Computing, Apr.
2014, pp. 352–357.

[31] Y. Zhang, H. Liu, L. Jiao, and X. Fu, “To offload or not to offload: An
efficient code partition algorithm for mobile cloud computing,” in Proc.

IEEE CLOUDNET’12, Nov. 2012, pp. 80–86.
[32] P. Brucker, Scheduling algorithms, 5th ed. Berlin: Springer, 2007.
[33] T. Gonzalez, O. H. Ibarra, and S. Sahni, “Bounds for LPT schedules

on uniform processors,” SIAM Journal on Computing, vol. 6, no. 1, pp.
155–165, 1977.

[34] Y. Cho and S. Sahni, “Bounds for list schedules on uniform processors,”
SIAM Journal on Computing, vol. 9, no. 1, pp. 91–103, 1980.

[35] E. Davis and J. M. Jaffe, “Algorithms for scheduling tasks on unrelated
processors,” ACM JACM, vol. 28, no. 4, pp. 721–736, 1981.

[36] W. M. Johnston, J. R. P. Hanna, and R. J. Millar, “Advances in dataflow
programming languages,” ACM CSUR, vol. 36, no. 1, pp. 1–34, 2004.

[37] (2017) Recon Instruments. [Online]. Available: http-
s://engage.reconinstruments.com/

2020 IEEE/ACM 28th International Symposium on Quality of Service (IWQoS)

Authorized licensed use limited to: Tsinghua University. Downloaded on June 15,2022 at 03:38:05 UTC from IEEE Xplore. Restrictions apply.

